Parallax Advanced Research and The Ohio State University

HYDROGEN FUEL CELL Hybrid Event (virtual & on-site)

SUSTAINABILITY INSTITUTE

THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH

The Ohio State University

CENTER FOR AUTOMOTIVE RESEARCH

Giorgio Rizzoni

The Ford Motor Company Chair in Electromechanical Systems; Professor, Mechanical and Aerospace Engineering; and the Director of The Ohio State University Center for Automotive Research

CENTER FOR AUTOMOTIVE RESEARCH OVERVIEW

CENTER FOR AUTOMOTIVE RESEARCH

CENTER FOR AUTOMOTIVE RESEARCH

OUR MISSION

To provide world-class education for the next generation of automotive industry leaders, through on-campus learning and continuous professional development;

To serve as a catalyst for innovation in automotive technology through collaborative, interdisciplinary research;

To support economic development, regionally and nationally.

RESEARCH AREAS OF EXPERTISE

OUR PEOPLE

SELECT CURRENT RESEARCH PROGRAMS

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

FTA Low- and No-Emissions Transit Testing

ARPA-E NEXTCAR Phase 1 and 2

Mobility Division of Ohio State Cybersecurity Institute

DOT University Transportation Centers: Crash Imminent Safety and Highly Automated Transportation Safety

Urban Air Mobility and Aviation Electrification

Project Collaboration with TRC SMART Center

Energy Storage Research

Over the past two years CAR, TRC and DriveOhio (ODOT) have partnered to win more than \$30M in federal awards related to Smart Mobility.

METHODS OF ENGAGEMENT

BUSINESS UNITS

EXPERIENTIAL LEARNING

RESEARCH AREAS OF EXPERTISE

2021 FEDERAL AND INDUSTRY RESEARCH PARTNERS

UChicago

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

> Carnegie Mellon

University

- \$12 million in new awards
- 104 active projects, engaging 83 different investigators

LABS AND FACILITIES

- 4 Engine Test Cells
- Light- And Heavy-Duty Chassis
 Dynamometers
- Low Voltage Energy Storage
- High Powered Energy Storage
- Hydrogen Refueling
- Battery Materials Research and Fabrication
- Driving Dynamics Vehicle Simulator
- High Power Traction Drives
- Cybersecurity
- Hardware-In-The-Loop Control Development

CONTINUING EDUCATION

- Integrates CAR research into graduate-level and continuing education opportunities
- Provide professionals with the cutting-edge knowledge required for innovation in the automotive industry

Opportunities:

Q

- Fully tailored certificate programs and certifications to meet your needs
- Flexibility in course content and delivery (on-site, at CAR, online)

Challenging students of all majors, backgrounds, skill levels and degrees of experience to compete on one of seven student teams.

lan Jakupca

Experience Fuel Cell Technology Lead at the NASA Glenn Research Center

NASA Hydrogen Technologies and Applications

Ian Jakupca NASA Glenn Research Center 15 August 2022

Presentation Overview

- NASA Overview
- Space Exploration
 - In Situ Resource Utilization (ISRU)
 - Space Synergies with Terrestrial Applications
- NASA Terrestrial Ties

Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)

Design Study for Hydrogen Fuel Cell Powered Electric Aircraft using Cryogenic Hydrogen Storage.

Mars Oxygen ISRU Experiment (MOXIE)

Aboard Perseverance, demonstrated the first production of oxygen from the atmosphere of Mars Apr. 2021.

National Aeronautics and Space Administration

NASA Centers and Installations

Ways to Partner with NASA

Technology Licensing

- Commercial entities using NASA technologies & software to benefit commercial endeavors
 - <u>https://technology.nasa.gov/</u>

Small Business Funding & Awards

- SBIR & STTR funding for small businesses & joint university small business ventures, respectively
 - <u>https://sbir.nasa.gov/</u>
- **SBIR Ignite** is a new way for small businesses that have a commercially-viable technology idea to use NASA as a steppingstone towards commercial success
 - https://sbir.nasa.gov/ignite

University Grants

- Space Technology Research Grants (STRG) provides funding to graduate students to tenured faculty members to advance space concepts to higher TRLs
 - <u>https://www.nasa.gov/directorates/spacetech/strg/about.html</u>

Grant Solicitations

- Directorate-level program funding provided through NSPIRES & displayed on Grants.gov
 - <u>https://nspires.nasaprs.com/external/</u>

Procurement

- NASA purchases of services, consumables, equipment, etc. from commercial providers
 - https://www.nasa.gov/office/procurement

00

NASA Facilities & Expertise

- Accessing NASA's facilities, equipment & SMEs through Reimbursable or nonreimbursable Space Act Agreements (SAA); these are similar to CRADAs
 - <u>https://www.nasa.gov/partnerships.html</u>

Networks and Ecosystems

- T2X & T2U programs for startups & university engagement, respectively
- Regional resources, cluster mapping, etc. for entrepreneurs

www.nasa.gov

GO

EXPLORE

Rapid, Safe, and Efficient Expanded Access to Diverse Sustainable Living and Working **Transformative Missions Space Transportation Surface Destinations Farther from Earth** and Discoveries Landing Advanced Communication **Heavy Payloads Advanced Propulsion** 2 Gateway **Autonomous Operations** In-space Assembly/Manufacturing Sustainable Power **In-space Refueling Dust Mitigation** a a a **Precision Landing** Advanced Commercial Lunar Payload Services In-Situ Resource Utilization Navigation Atmospheric ISRU **Cryogenic Fluid Management** AND A STATE OF A STATE **Surface Excavation and Construction** A CONTRACT OF A CONTRACT OF Extreme Access/Extreme Environments

Terrestrial Hydrogen Applications

- Water Electrolysis to supply the Hydrogen economy
 - Grid Stabilization / load balancing
 - *Micro-grids*
 - Primary Electrical Power
- Fuel cells for primary direct current (DC) electrical power
 - o Industrial motors
 - Mobility platforms
 - Electric aircraft / Urban Air Mobility (UAM)

The Space Launch System rocket core stage comes alive during the Green Run hot fire test on 16 Jan. 2021 at NASA's Stennis Space Center near Bay St. Louis, Mississippi. Image Credit: NASA

Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)

Design Study for Hydrogen Fuel Cell Powered Electric Aircraft using Cryogenic Hydrogen Storage

University of Illinois @ Urbana-Champaign Image Credit: CHEETA Project Image

NASA's all-electric X-57 Maxwell prepares for ground vibration testing at NASA's Armstrong Flight Research Center in California. Credits: NASA Photo / Lauren Hughes

ARTEMIS

We're going to the Moon to learn to live on other planets and for the benefit of all humanity.

With the Artemis lunar exploration program, NASA will put the first woman and first person of color on the lunar surface and build a sustainable presence there and in lunar orbit.

The Artemis Program Snapshot

The Artemis Program Snapshot

ARTEMIS BASE CAMP

A truly sustainable infrastructure on the lunar surface

- A pressurized rover expands exploration range
- A foundation surface habitat enables longer duration stays
- Supported with small logistics landers (e.g. CLPS)
- International partnerships
- Science, technology demonstrations, operational analogs for Mars missions

EXPLORATION CAPABILITIES

The technologies and systems that allow the crew to thrive and work in space

- Regenerative life support systems enable longer-duration missions
- Crew health and performance technology keeps astronauts safe and healthy
- New systems reduce mass, volume, and the need for resupply

How Making Propellants on Planetary Surfaces Saves on

Launches and Cost (Gear Ratio Effect)

LEO

Lunar Surface

Earth Surface

Every 1 kg of propellant made on the Moon or Mars saves 7.5 to 11.2 kg in LEO

- Enable exploration by staging required resources in forward locations
 - Earth Orbit (LEO, GEO)
 - LaGrange Points (EML1 and EML2) —
 - Lunar Orbit
 - Lunar Surface
- Resources include propellant depots, propellant production facilities (initially H_2 and O_2), and consumable storage

Potential >283 mT launch mass saved in LEO = 3+ SLS launches per Mars Ascent

- Savings depend on in-space transportation approach and assumptions; previous Mars gear ratio calculations showed only a 7.5 kg saving
- 25,000 kg mass savings from propellant production on Mars for ascent = 187,500 to 282,500 kg launched into LEO

Moon Lander: Surface to NRHO

- Crew Ascent Stage (1 way): 3 to 6 mT O_2
- Single Stage (both ways): 40 to 50 mT O_2/H_2

A Mu	laa ch	s To	the
La	unc	:h	Pad
		N	lass

87.7 kg

153 kg

183.6 kg

244.8 kg

300 kg

395.8 kg

In Situ Resource Utilization (ISRU) on the Lunar Surface

Manufacturing from locally sourced materials

= funded work

Using Space Resources reduces cost

- Making at point-of-use saves mass
- Reduces required number of launches
- Opens potential to reuse mission transportation assets

Using Space Resources increases safety

- Shortens logistical chain
- Minimizes impact of shortfalls in other system performance

Using Space Resources enhances/enables new capabilities

- Extends/enhances missions
- Increased surface mobility and access
- Increased science

Learning to use Space Resources can help us on Earth

- Lunar environment is an engineering crucible

Space Exploration Synergistic with Terrestrial Needs

 Improve water cleanup techniques Advance food/plant growth techniques and nutrient production Food/Water 	 Reduce or eliminate cement and asphalt renewable materials Alternative construction techniques 3-D printing, no Portland cement Remote operation and automation
 Increase safety Mining Reduce maintenance and logistics Increase mining and processing efficiency Improve environmental compatibility 	 Energy More efficient power generation, storage and distribution Increase renewable energy: Use sun, thermal, trash, and alternative fuel production Reduction of Carbon Dioxide emissions

Promote *Reduction, Reuse, Recycle, Repair, Reclamation*for benefit of Earth and living in Space.

Presentation Review

- NASA Overview
- Space Exploration
 - In Situ Resource Utilization (ISRU)
 - Space Synergies with Terrestrial Applications
- NASA Terrestrial Ties

Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)

Design Study for Hydrogen Fuel Cell Powered Electric Aircraft using Cryogenic Hydrogen Storage.

Mars Oxygen ISRU Experiment (MOXIE)

Aboard Perseverance, demonstrated the first production of oxygen from the atmosphere of Mars Apr. 2021.

Questions can be sent via e-mail to Ian Jakupca (<u>ian.j.jakupca@nasa.gov</u>)

Thank you for your attention.

Dr. Thomas Peng

Research Chemist at the Air Force Research Laboratory Energy Office U.S. AIR FORCE

Energy Agility for Space Vehicle Applications Enabled by Bipropellant Consuming Solid Oxide Fuel Cells (SOFCs) Hydrogen Fuel Cell – Hybrid Event Monday August 15, 2022

Dr. Thomas L. Peng - Principal Investigator

Motivation

- Problem:
 - Deployed spacecraft are expected to remain in operation for years without servicing
 - Spacecraft mass and volume limitations make it challenging, and often impossible, to load a spacecraft with all the equipment needed to be able to respond to all possible threats or fulfill possible needs. Want dual function systems
 - Need electrical power to run what capabilities are loaded
- GPS Satellite USA-132
 - Launched July 23, 1997 (24 years ago)
 - Still Operational

• SpaceX Falcon 9

- Maximum Payload Volume: 145m³, 145,000L
- Maximum Payload Mass to LEO: 22,800 kg
- Cost per launch \$62M
 - \$2,720/kg
 - \$430,000/m³, \$430/L

SpaceX Falcon 9 Users Guide: August 2021 SpaceX Falcon 9 Capabilities and Services: 2021

THE AIR FORCE RESEARCH LABORATORY

Operating power requirement values.

Subsystem/component	Power (W)
AOCS	
Star tracker	4.0
Gyroscope	1.0
Reaction wheels	12.0
Communications	
Receiver (Rx) and RF distribution unit	6.0
Transmitter (Tx)	25.0
On-board data handling	
On-board computer	22.0
Payload	
Narrow angle camera	10.0
Propulsion	
T5 Ion engine PPU—HIGH	600.0
T5 Ion engine PPU—LOW	38.0
Hollow cathode thruster PPU	80.0
Power	
Power control unit	7.0
Power distribution unit	3.0
Battery heaters	60.0
Mechanism	
Solar array drive mechanism	9.0

-	
Α	Antenna
в	PCDU
С	HCT PPU
D	T5 ion engine
Ε	XFCU
F	Reaction wheel
G	T5 PPU
н	HCT
I	Star tracker
J	Secondary batteries
\mathbf{K}	Center tube structure
L	Camera
\mathbf{M}	On-board computer
Ν	Transceiver
0	Sun sensor

S. Ulrichetal. ActaAstronautica 64(2009) 244 –255 247

If thrust needed:

Problem Mitigation

- Establish operational flexibility on how energy stowed onboard a spacecraft is used by developing a fuel cell that can generate electricity by consuming bipropellant
- Bipropellant Enabled Electrical Power Supply (BEEPS)

If electricity needed:

- Feed bipropellant into SOFC to generate electricity
- SOFC used since high operating temperature means not susceptible to poisoning
- If proven to work with ammonia/nitrous oxide combination, should work with traditional hydrazine/nitrogen tetroxide

Benefits

- Establishes an electrical power plant by tapping the existing fuel and oxidizer supply in a bipropellant thruster equipped spacecraft
- For large volumes, have substantially larger energy densities than batteries
- Do not suffer self discharge so there is no expiration date on when energy must be used.
- Allows redesigns to achieve the desired output voltage and current without perturbing the chemical storage tank designs
- Enables bipropellant thruster and stored electricity replenishment with a single refueling operation
- SOFC used are resistant to poisoning and do not need expensive catalytic metals to function

360 330 330 Greater slopes are Greater slopes are 300 better as it means we 300 better as it means we aet more days 270 get more days of 270 240 240 210 of operation per 240 operation per liter of power kilogram of power 210 plant. plant. 0 0 180 o 180 of 150 150 120 Day a 120 Li-ion Rechargeable Battery •Li-ion Rechargeable Battery (Energy Density 40% DoD: 0.064 kWh/kg) (Energy Density 40% DoD: 0.157 kWh/L) 90 90 Li/CFx Single Use Battery Li/CFx Single Use Battery 60 60 (Specific Energy: 0.533 kWh/kg) (Energy Density: 0.971 kWh/L) 30 Hydrazine/NTO Fuel Cell Hydrazine/NTO Fuel Cell 30 (Specific Energy: 1.599 kWh/kg) (Energy Density: 1.708 kWh/L 250 500 750 1000 1250 1500 0 120 180 240 300 360 420 480 540 600

Mass and Volume Cost to run a 10W Satellite

Total Mass of the Onboard Power Plant (kg)

Total Volume of the Onboard Power Plant (L)

https://www.space.com/private-satellites-docking-success-northrop-grumman-mev-1.html

Challenges

- Electrochemistry
 - Catalytic electrode design
 - Solid state electrolyte design
- Fuel Cell Operation
 - Optimal feed pressures
 - Optimal feed rates
 - Optimal operation temperature
 - Optimal exhaust recirculation and release rate
- Bipropellant Compatibility
 - Identify bipropellants we can run fuel cell on
- Creating a fuel cell that outputs useful voltages and currents
 - Cell design

- Thermal Control
 - Establishing >600°C operating temperature
 - Isolating hot fuel cell from the rest of the satellite
- Fuel / Oxidizer / Exhaust Management
 - Gas manifolds
 - Integration with bipropellant thruster
- Space Operations Development
 - What can we do if we have fuel cells that can provide different amounts of electrical power for different amounts of time?

Electrochemistry and Fuel Cell Operation

NextCell Electrolyte Supported Button Cell:

Anode: Nickel Oxide (NiO) / (12.5 mm Diameter / ~50 µm thickness)

Cathode: Lanthanum strontium manganite (LSM) / (12.5 mm Diameter / ~50 µm thickness)

Electrolyte: (Hionic[™] (Scandia-doped Zirconia)) / 20 mm diameter ~150 µm thickness)

- Button cells are used as proof of concept
- Scribner test station: EIS analyzer, multi-gas unit, potentiostat
- Reactant Gases
 - 4% H_2 in N_2 , H_2 , NH_3 , Air, O_2 , N_2O
- Electrochemical Characterization
 - OCV, VI curves, and EIS

Confirmed Viability of Driving SOFC with Bipropellant

NH₃ is likely decomposing into N₂ and H₂. Similarly, N₂O is likely decomposing into N₂ and O₂ ~0.95V at 0 current density for all NH₃ and N₂O combinations similar to the Open Circuit Voltage of H₂:O₂ pair

Ohmic loss, specifically ohmic loss due to electrolyte resistance, is the major loss mechanism

Voltage vs current density slopes, aside from the 4%H₂/N₂O pair, are similar

H₂/X Data:

- Pure O₂ performs best as expected
- N₂O, with 36% O₂ mass percentage from N₂O → N₂ + ½O₂ decomposition expected to perform better than 23% O₂ found in air. This suggests incomplete N₂O decomposition NH₃/X Data:
- Lower power output than H_2/X may be due to endothermic decomposition of NH_3 which can cool the fuel cell X/N_2O Data:
- Sharp drop in voltage with increasing current density observed when the SOFC is fed 4%H₂ and N₂O may be due to mass transport limits arising from low concentration of H₂ Unexpectedly, NH₃/X with its endothermic decomposition of NH₃ performed better than X/N₂O with its exothermic decomposition of N₂O
- Incomplete decomposition of N₂O may be limiting X/N₂O performance

AFRL

Test Conditions

SOFC: NiO/Scandia-doped Zirconia/LSM

Temp: ~ 800°C, Pressure: Ambient

Flows: 150/150 sccm

Aerosol Jet printing enables controlled deposition of active materials

Processing Parameters control microstructure, properties, and electrochemical performance

- Anode / Electrolyte Ink Formulation
 - (micro/atomic)
 - Power loading
 - Solvent
 - Binders / plasticizer
 - Pore formers

<u>Aerosol Jet Printing</u>

- (macro/meso)
- Exhaust Flow Rate
- Atomizer Pressure
- Substrate Temperature
- Raster Speed
- Number of Layers

<u>Thermal Processing</u>

- Additive Burnout
- Sintering Profiles

- \rightarrow Improved printed layer properties
 - Density/Porosity
 - Thickness
 - Tortuosity

AJ printing of anode interlayer on NiO-YSZ support

AFRL

43

Anode supported architecture shows conformal layers and ability to control thickness and composition (*layer delamination shown is artifact of manual fracture for cross-section SEM*)

Matlab/Simulink System Model of AI-SOFC

Advantages of system-level simulation over CFD or multiphysics FEM: we can quickly study

Size

Weight

And

Power

of the integrated system with many components. This physics model allows us to extrapolate results from lab fuel cell tests to the integrated space power system. Details included:

- Electrochemistry
- Bipropellant decomposition kinetics
- Two-phase catalyst bed flow/reactions
- Propellant tank dynamics
- Heat transfer

Anode State

Matlab/Simulink System Model of AI-SOFC

Results of Simulated Fuel Cell Test Thermal and Power Analysis

Hypergolic Bipropellant Compatibility

NASA, CR-127057 (1972)

Hydrazine(s) + NTO State-of-the-art (1950's Technology) Ionic Liquids + Oxidizers (NTO, HNO₃, H₂O₂ Emerging "Green Propellent"" Technology

J. Phys. Chem. A, **112**, 7816 (2008)

Controlled Decomposition of N₂H₄

□ Produce Benign Fuel Mixture:

 $\Box N_2 H_4 \to N_2 + 2H_2 (\Delta H = -95.4 \text{ kJ mol}^{-1})$ (1) $\Box 3N_2 H_4 \to N_2 + 4NH_3 (\Delta H = -157.4 \text{ kJ mol}^{-1})$ (2)

The overall decomposition can be expressed as follows: $3N_2H_4 \rightarrow 4(1-x)NH_3 + (1+2x)N_2 + (6x)H_2$ (3)

Where selectivity, x, for (1) can be determined over S405 catalyst conditions (Temperature, Pressure, Reaction Time), with:

$$= 2[H_2] / (2[H_2] + 3[NH_3])$$
(4)

MOXIE Statistics

 CO_2 to $2CO + O_2$ electrolysis device designed and fabricated by the OxEon Energy Team

> Mass: 12 kg (stack: 770 g) Power: 350 W (peak) 50 W Stack Size: 23.9 x 23.9 x 30.9 cm Oxygen Production: 10 g/hr Oxygen Purity: 99.6%

"MOXIE is sponsored by NASA's Space Technology Mission Directorate and Human Exploration and Operations Mission Directorate. It is a joint venture between NASA, JPL, and MIT."

NASA Jet Propulsion Laboratory (JPL) Team's Responsibility:

- Packaging
- Flight qualification testing
- Rover installation

AFRI

MOXIE Stack Design

OxEon Team's Responsibility:

- Materials Selection
- Stack Design
- Fabrication
- Testing
- Test coordination at JPL

20 kW SOEC / 10 kW SOFC System Balance of Plant

AFRL

52

Conclusions:

- It is viable to generate electricity by supplying a green bipropellant pair, specifically ammonia (NH₃) and nitrous oxide (N₂O), to a Solid Oxide Fuel Cell (SOFC)
- Bipropellant decomposition appears to be a major factor in the electric power an SOFC can output
- Significant work still needs to be done before a fuel cell which can be integrated with a bipropellant thruster can be realized

Requests:

 Looking for new electrodes, electrolytes, seals, and fuel cell designs to consider

Acknowledgements

Kirtland AFB, New Mexico

- Dr. Thomas Peng (afrl.vss@us.af.mil)
- Professor Fernando Garzon (UNM/Sandia)
- Professor Lok-kun Tsui (UNM)
- Dr. Andre Spears (UNM)
- Dr. John Plumley (UNM)
- Dr. Robert Walters (AFRL/RVS)
- Valerie Lawdensky (AFRL/RVS)

Wright-Patterson AFB, Ohio

- Dr. Doug Dudis (AFRL/RXS)
- Dr. Joseph Fellner (AFRL/RQQ)
- Dr. Jay Deiner (AFRL/RQQ)
- Dr. Will Huddleston (UDayton)
- Professor Rory Roberts (TnTech)
- Aaron Bain (TnTech)
- Tyler Edwards (TnTech)

Edwards AFB, California

- Dr. Ghanshyam Vaghjiani (AFRL/RQR)
- Ethan Sichler (AFRL/RQR)
- Dr. Justin Koo (AFRL/RQR)

OxEon Energy, Utah

- Dr. Elango Elangovan (info@oxeonenergy.com)
- Joseph Hartvigsen (OxEon)
- Expertise
 - Thermal Control
 - Energy Storage and Electrochemistry
 - Additive Manufacturing, Catalyst, and Electrolyte design
 - Fuel Cell Modeling
 - Spacecraft Propulsion and Operations
 - Fuel Cell Design and Assembly

THANK YOU

SUSTAINABILITY INSTITUTE

THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH